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Abstract

How far can a stack of identical “books” (idealized as rigid, frictionless blocks) ex-
tend beyond the edge of a table without toppling? This note rewrites the mechanical
model used in the classic overhang literature and works out two small examples in full
coordinate detail: a three-block configuration with overhang 1, and the four-block

“Ainley” configuration with overhang 15−4
√
2

8 ≈ 1.16789 as reproduced by Paterson
et al. (4). Throughout we use a one-dimensional, vertical-force-only model and
treat balance via force propagation and centers of gravity. A companion interactive
implementation that uses the same endpoint-reduction viewpoint is available online
(2).

1 Coordinate convention and the vertical-force model

We normalize every block to have length 1 and weight 1. The table occupies the half-plane
to the left of its edge:

table support region = {(x, y) : x ≤ 0}.

We draw the table edge as the vertical line x = 0.

Meaning of the variable x. The variable x is the horizontal coordinate along the table
edge line, measured in block lengths. Positive x means “to the right” (overhanging side),
negative x means “to the left” (supported side). Each block i is represented by a closed
interval on the x-axis,

Bi = [xi, xi + 1] ⊂ R,

where xi is the left endpoint of the block. Its center of gravity is at

cg(Bi) = xi +
1
2
.

Only vertical forces are allowed (no shear, no torque couples, no friction). A stacked
configuration is balanced if there exists a set of nonnegative vertical reaction forces at
contact regions that satisfies: (i) force equilibrium, and (ii) moment equilibrium for each
block. The model and its “force propagation” viewpoint are standard in the overhang
literature; see Paterson et al. (4) for a detailed development. For general background on
the block-stacking problem, see also Wikipedia (5).
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Endpoint reduction (clearance idea). If a block is supported along an overlap
interval [L,R], then any vertical support distribution on [L,R] with total force W and
total moment Wx∗ is equivalent (for equilibrium) to two endpoint forces at L and R:

FL = W
R− x∗

R− L
, FR = W

x∗ − L

R− L
,

so that FL+FR = W and LFL+RFR = Wx∗. In the figures below, the endpoints actually
used are marked explicitly.

2 Example A: three blocks and an overhang of 1

2.1 Geometry

Consider three blocks B1, B2, B3 arranged as follows (see Figure 1):

B1 = [−1
2
, 1

2
], B2 = [−1, 0], B3 = [0, 1].

The rightmost edge of the stack is at x = 1, so the overhang (to the right of the table edge
x = 0) equals 1.

2.2 Center of gravity check

The centers of gravity are

cg(B1) = 0, cg(B2) = −1
2
, cg(B3) =

1
2
.

Hence the center of gravity of the three-block stack is

cg(B1 ∪B2 ∪B3) =
0 + (−1

2
) + (1

2
)

3
= 0.

The bottom block touches the table only on [−1
2
, 0]. Since the overall center of gravity lies

exactly at x = 0, the configuration is balanced (critically balanced).

x = 0 x = 11−1
2

0 1
2

Figure 1: Three blocks with overhang 1. Dots indicate centers of gravity. Tick marks label
the overlap endpoints used for endpoint reduction.

3 Example B: four blocks and the Ainley overhang
15−4

√
2

8

3.1 What the picture shows

Figure 1 in Paterson et al. (4) reproduces a four-block configuration credited to Ainley
(1). It achieves the overhang

D =
15− 4

√
2

8
≈ 1.16789,
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slightly larger than 7/6 (the best overhang obtainable by the symmetric “bridge” arrange-
ment).

3.2 Exact coordinates of the blocks

Let the table edge be at x = 0. Define four blocks (bottom, left-middle, right-middle, top)
by their left endpoints:

B1 = [x1, x1 + 1], x1 = −1 + 2
√
2

8
,

B2 = [x2, x2 + 1], x2 = −51

56
− 5

√
2

28
,

B3 = [x3, x3 + 1], x3 =
7

8
−

√
2

2
,

B4 = [x4, x4 + 1], x4 = −103

56
+

13
√
2

14
.

Numerically:

x1 ≈ −0.47855, x2 ≈ −1.16325, x3 ≈ 0.16789, x4 ≈ −0.52609.

Overlaps (contact regions).

• B2 rests on B1 along [x1, x2 + 1].

• B3 rests on B1 along [x3, x1 + 1].

• B4 rests on B2 along [x4, x2 + 1] (touching at x2 + 1).

• B4 rests on B3 along [x3, x4 + 1] (touching at x = x3).

Overhang. The rightmost edge is the right edge of B3:

D = x3 + 1 =
15− 4

√
2

8
≈ 1.16789.

3.3 Force propagation and moment equations

We show equilibrium using only vertical forces; all weights are 1. In a critically balanced
solution we may (by endpoint reduction) take all reaction forces to act at endpoints of the
overlap intervals. Define the following upward forces (all nonnegative):

• On B4: an upward force 2−
√
2 at x = x2+1 and an upward force

√
2− 1 at x = x3.

• On B2: an upward force 3−
√
2 at x = x1 (and 0 at x = x2 + 1).

• On B3: an upward force
√
2 at x = x1 + 1 (and 0 at x = x3).

• On B1: an upward force 4 at the table edge x = 0 (and 0 at x = x1).
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x = 0 x = D
D = 15−4

√
2

8

x1 x1 + 1x2 + 1 x3

Figure 2: Ainley’s four-block configuration (as reproduced in Paterson et al. (4)), drawn
from the exact coordinates above. Dots indicate centers of gravity. Tick marks label the
overlap endpoints used for endpoint reduction.

4 Remarks on “stability” versus “balance”

The examples above are balanced : they satisfy force and moment equilibrium with non-
negative vertical reactions. They are typically critical (some reactions concentrate at
endpoints or even at a single point), so a physical stack needs either friction or a tiny
perturbation to become robustly stable. This distinction, and the practice of perturbing
balanced stacks to stable ones, is emphasized in Paterson et al. (4).

5 Force collections and the tree viewpoint (Paterson

et al., Figure 6)

This section explains the bookkeeping device used in Paterson et al. (4) (Figure 6): one
represents the internal balancing forces as a flow of vertical forces through the stack. Each
block acts as a local “rearrangement gadget”: it receives some vertical support forces from
below, it uses up one unit of force to support its own weight, and it passes the remaining
force upward to the blocks above, while preserving the correct moment.

5.1 Forces as a discrete distribution

If block Bi rests on a block (or the table) below, then the support can be represented by a
finite set of upward point forces

(xi,1, fi,1), (xi,2, fi,2), . . .

applied along the bottom edge of Bi (each xi,t lies in the relevant contact interval). Similarly,
Bi applies upward point forces to blocks above it along its top edge. Because we ignore
friction and shear, all forces are vertical; because we are in static equilibrium, only total
force and total moment matter.

A convenient abstraction is to view a set of upward point forces as a discrete “mass
distribution”

µ = {(x1,m1), . . . , (xk,mk)},
where the mj are magnitudes of forces and the xj are application points.

5.2 The collections Fi and the local conservation laws

Number blocks bottom-to-top. Let B0 denote the table. For 0 ≤ i < n, let Fi denote the
collection of upward forces exerted by objects in

{B0, B1, . . . , Bi}
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(on the left side of a cut) on blocks in

{Bi+1, . . . , Bn}

(on the right side of a cut). Thus F0 consists of the forces the table applies to the stack;
Fn−1 consists of the forces supporting only the top block.

Compare two consecutive cuts Fi and Fi+1. Passing the cut from below Bi to above Bi

removes the forces that act upward on Bi and replaces them with the forces that Bi exerts
upward on blocks above it. Static equilibrium of Bi yields two equations (total force and
total moment). Let a be the left edge of Bi (so Bi spans [a, a+ 1]) and let {(xt, ft)} be
the upward forces applied to Bi from below. Let {(x′

s, f
′
s)} be the upward forces applied

by Bi to blocks above. Then equilibrium of Bi is exactly:∑
t

ft = 1 +
∑
s

f ′
s, (1)∑

t

xtft =
(
a+ 1

2

)
+
∑
s

x′
sf

′
s. (2)

5.3 A 4-book tree example (Ainley configuration)

Figure 3 gives a compact force-tree for the four-book Ainley stack. Edge labels are
transmitted vertical force magnitudes. Moment balance determines where along the
contact intervals these forces act (as shown by the endpoints in Figure 2).

Table
B0

B1

B2 B3

B4

4

3− √
2

√ 2

2−
√ 2

√
2− 1

↓ 1

↓ 1 ↓ 1

↓ 1

Edge labels = transmitted vertical forces. At each block: incoming force = outgoing force +1 (its weight).

Figure 3: A force-tree for the four-book Ainley stack: magnitudes only; locations are fixed
by moment balance (endpoints in Figure 2).

6 A nonlinear programming view and a KKT check

for Ainley’s 4-block stack

This section reformulates the four-block configuration as a small nonlinear program (NLP).
The nonlinearity comes from bilinear moment terms “position × force”. By endpoint
reduction, it suffices to represent each contact by forces acting at endpoints of overlap
intervals.
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6.1 Decision variables

Blocks are Bi = [xi, xi + 1] with xi ∈ R for i = 1, 2, 3, 4. We introduce endpoint reaction
forces (all upward and nonnegative):

• Table → B1 on [x1, 0]: forces tL at x = x1 and tR at x = 0.

• B1 → B2 on [x1, x2 + 1]: forces fL
12 at x = x1 and fR

12 at x = x2 + 1.

• B1 → B3 on [x3, x1 + 1]: forces fL
13 at x = x3 and fR

13 at x = x1 + 1.

• B2 → B4 on [x4, x2 + 1]: forces fL
24 at x = x4 and fR

24 at x = x2 + 1.

• B3 → B4 on [x3, x4 + 1]: forces fL
34 at x = x3 and fR

34 at x = x4 + 1.

All forces satisfy

tL, tR, f
L
12, f

R
12, f

L
13, f

R
13, f

L
24, f

R
24, f

L
34, f

R
34 ≥ 0.

6.2 Objective (maximize overhang)

Introduce an overhang variable D and maximize it subject to being at least the right edge
of each block:

max D s.t. D ≥ xi + 1 (i = 1, 2, 3, 4).

In Ainley’s layout, the optimal rightmost edge is attained by B3, so at the optimum one
has D = x3 + 1.

6.3 Equilibrium constraints (force and moment for each block)

All weights are 1, acting at xi +
1
2
.

Top block B4.

fL
24 + fR

24 + fL
34 + fR

34 = 1, (3)

x4 +
1
2
= x4f

L
24 + (x2 + 1)fR

24 + x3f
L
34 + (x4 + 1)fR

34. (4)

Block B2 (supported by B1, supports B4).

fL
12 + fR

12 = 1 + (fL
24 + fR

24), (5)

(x2 +
1
2
) + x4f

L
24 + (x2 + 1)fR

24 = x1f
L
12 + (x2 + 1)fR

12. (6)

Block B3 (supported by B1, supports B4).

fL
13 + fR

13 = 1 + (fL
34 + fR

34), (7)

(x3 +
1
2
) + x3f

L
34 + (x4 + 1)fR

34 = x3f
L
13 + (x1 + 1)fR

13. (8)

Bottom block B1 (supported by table, supports B2 and B3).

tL + tR = 1 + (fL
12 + fR

12) + (fL
13 + fR

13), (9)

(x1 +
1
2
) + x1f

L
12 + (x2 + 1)fR

12 + x3f
L
13 + (x1 + 1)fR

13 = x1tL + 0 · tR. (10)
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6.4 Geometry constraints (intended contact pattern)

To encode the Ainley-type contact pattern, impose linear overlap constraints such as:

x1 ≤ 0 ≤ x1 + 1

(bottom block crosses the table edge), together with the overlap relations listed earlier in
Example B (e.g., x2 ≤ x1 ≤ x2 + 1 ≤ x1 + 1, x1 ≤ x3 ≤ x1 + 1 ≤ x3 + 1, etc.). At Ainley’s
optimum these inequalities are satisfied and (for KKT purposes) are not active in the
simplest check below.

6.5 KKT conditions and verification for Ainley’s solution

Write the problem in minimization form by minimizing −D. Let λ1, . . . , λ8 be multipliers
for the eight equilibrium equalities (3)–(10). Let µ ≥ 0 be multipliers for the nonnegativity
constraints written as −u ≤ 0.

The KKT conditions are:

• Primal feasibility: all equalities, inequalities and nonnegativity constraints hold.

• Dual feasibility: µ ≥ 0 for all inequality multipliers.

• Complementary slackness: µu u = 0 for each force variable u.

• Stationarity: ∇(−D) +
∑8

k=1 λk∇Ek +
∑

u µu∇(−u) = 0, where Ek denotes the
kth equilibrium equality.

Ainley’s point. The coordinates are

x1 = −1 + 2
√
2

8
, x2 = −51

56
− 5

√
2

28
, x3 =

7

8
−

√
2

2
, x4 = −103

56
+

13
√
2

14
,

with D = x3 + 1 = 15−4
√
2

8
. The endpoint forces used in Example B are

tL = 0, tR = 4,

fL
12 = 3−

√
2, fR

12 = 0, fL
13 = 0, fR

13 =
√
2,

fL
24 = 0, fR

24 = 2−
√
2, fL

34 =
√
2− 1, fR

34 = 0.

Direct substitution shows that all equilibrium equalities (3)–(10) hold exactly, and all
forces are nonnegative.

Active set and complementary slackness. The active nonnegativity constraints are
precisely

tL = fR
12 = fL

13 = fL
24 = fR

34 = 0.

All other forces are strictly positive, hence their inequality multipliers can be set to 0.
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A valid set of KKT multipliers. One choice of equality multipliers (in the order of
(3),(4),(5),(6),(7),(8),(9),(10)) is

λ1 =
1

32
+

√
2

16
, λ2 = 0, λ3 =

1

32
+

√
2

16
, λ4 = 0, λ5 = −15

32
+

√
2

2
, λ6 =

√
2

2
, λ7 = 0, λ8 =

1

4
.

For the active inequality multipliers (in the order tL, f
R
12, f

L
13, f

L
24, f

R
34), one may take

µtL =
1

32
+

√
2

16
, µ12R =

3

56
+

√
2

56
, µ13L =

1

4
−
√
2

16
, µ24L = 0, µ34R =

10

7
−6

√
2

7
,

which are all nonnegative. With these multipliers, the stationarity equation holds for the
objective min(−D) at Ainley’s point, and complementary slackness holds because each
listed µ corresponds to a force that is 0.

Conclusion. Ainley’s four-block configuration is a KKT point for the endpoint-force NLP
model above (a necessary condition for local optimality in this nonconvex formulation).

7 Companion implementation and coordinate map-

ping

The companion Pygame implementation (2) uses the same endpoint-reduction viewpoint:
for each book it computes the resultant load location x∗, then routes the total load to two
bracketing overlap endpoints. The code uses pixel coordinates; the mapping to this report
is:

X = Xedge + (block-length) · x,

where Xedge is the pixel position of the table edge and the block-length is the pixel width
of one book. In a built-in test mode, the code reproduces Example A and Example B
directly from the (xi) given above.
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