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Abstract

Computing has evolved from fixed, automated pipelines to systems that learn, reason,
and adapt. This tutorial introduces the fundamental ideas that make computing intelligent,
organizes the field into practical categories, and presents two complementary organizing
frames: (i) four practical cornerstones that enable AI in practice (data, compute, algorithms,
interfaces) and (ii) five methodological pillars (reasoning, learning, representation, self-
adaptation, interaction). The tutorial is designed for students and practitioners and includes
short exercises and a capstone ideation activity around a “Berry Assistant” application.
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1 Introduction
What is Artificial Intelligence (AI)? In this tutorial, we regard AI as the study and engineer-
ing of computer systems that perform complex tasks typically requiring human intelligence (cf.
[16]). Beyond being fast or automated, intelligent computing systems can exploit structure, learn
from data and feedback, reason with domain models, represent knowledge at appropriate levels
of abstraction, adapt to new tasks, and interact effectively with humans and their environments.

Motivation and audience. This tutorial is intended for curious lay readers and young
researchers who want a compact map of modern AI: what problems it addresses, which core
ideas it builds on, and which resources (data, compute, algorithms, and interfaces) are typically
required to make systems work reliably at scale. Our goal is to demystify the moving parts, show
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how the methodological pillars connect to practical engineering, and provide enough pointers to
the literature to support deeper study ([16,17,18,21]).

Figure 1: AI at the intersection of computation, data, and human problem solving. Image credit:
https://pixabay.com/fi/photos/mies-kirjoittaminen-2562325.

2 Definitions and Categories of AI
Working definition. Artificial Intelligence (AI) denotes computer systems performing complex
tasks typically requiring human intelligence ([16]).

Example categories. AI spans strategic gameplay such as chess, Go, and other combinatorial
puzzles; predictive and prescriptive analytics in domains like finance and medicine; design
and planning problems including routing, scheduling, drug discovery, and engineering design;
language processing tasks such as spam filtering, translation, coding support, and conversational
agents; and perception-and-control scenarios for autonomous robots, drones, and computer vision
systems. (Overview texts: [16,17,21]; statistical learning foundations: [20,32].)

Figure 2: Examples across AI application areas. Strategic game play, computer-aided design,
natural language processing, intelligent devices (drones, medical imaging).

Selected references: For concrete illustrations, see [3] on AlphaZero-like reinforcement learning
for Morpion Solitaire, [4] on self-adaptive vision agents using evolutionary strategies, and [5] on
drone monitoring and machine learning.

Exercises (Foundations and Categories).
E1. Provide three examples of AI systems you use or know well. Categorize each (e.g.,

perception, decision support, control, dialogue) and explain why it qualifies as AI.
E2. Compare your categorizations with a peer’s and discuss which examples are narrow vs.

potentially general and what would be required to broaden their scope.
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3 Four Practical Cornerstones Enabling Today’s AI
We emphasize four practical cornerstones that jointly enable modern AI: Data, Compute
Power, Algorithm Design, and Interfaces (human and environmental). Each can be weak
or strong in a given system, and characteristic profiles distinguish families of AI solutions (e.g.,
self-play systems for Go vs. conversational agents).

Data. High-quality data determines both the ceiling and the speed of learning. Useful datasets
are representative, curated to remove noise and bias, well-labeled when supervision is required,
and often augmented to improve generalization. For unsupervised or self-supervised pipelines,
coverage and diversity matter more than labels; for safety-critical applications, provenance and
documentation are essential ([17,18,25]).

Compute power. Modern AI relies on parallel compute (GPUs/TPUs) and memory band-
width to train over large datasets and model families. Through batching and distributed training,
compute determines the feasible model size and the timescale of iteration. Practical systems
balance cloud resources for training with on-device or edge constraints for inference (latency,
energy).

Algorithm design. Algorithms turn data and compute into capability: optimization methods
(from gradient descent to evolutionary search), model classes (probabilistic models, kernel ma-
chines, neural networks), search and planning, and reinforcement learning. Design choices encode
prior knowledge, control capacity, and affect sample/compute efficiency ([16,17,18,20,21,34,35]).

Interfaces. Interfaces connect AI to the world: data pipelines and sensors, user interfaces
and APIs, and human-in-the-loop mechanisms for feedback, oversight, and preference learning.
Clear interfaces also support responsible deployment (transparency, alignment) and efficient data
acquisition (e.g., learning loops) ([26,14,36]).
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Figure 3: Four cornerstones of practical AI with two contrasting profiles (A, B), e.g., AlphaZero-
style systems vs. chatbot-style systems.

References: [1]; [2].

Exercises (Cornerstones in Practice).
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C1. For one of your examples from E1, sketch a cornerstone profile: rate Data, Compute,
Algorithms, and Interfaces on a 1–5 scale and justify your ratings.

C2. Propose two trade-offs (e.g., higher accuracy vs. latency; transparency vs. performance)
and suggest design choices to navigate them.

C3. Identify a bottleneck (data, compute, algorithms, or interfaces) and outline a plan to
mitigate it (e.g., active learning, quantization, human-in-the-loop).

4 Five Core Methodological Pillars
We structure the tutorial around five methodological pillars: Reasoning, Learning, Repre-
sentation, Self-Adaptation, and Interaction.

4.1 Representation

What it is. Encoding data and knowledge (symbols, rules, ontologies, feature vectors, neural
activations). Trends move from manual features to end-to-end deep representation learning,
connecting to self-adaptation (deep learning overviews: [18,25]; neural network/textbook
treatments: [17,31]; probabilistic representations: [22,37]).

Why it matters. Proper abstraction reduces complexity and enables effective reasoning
and learning.

Figure 4: Examples of representational choices: learned features and explicit ontologies.

Reference: [6].

Exercises (Representation for Plant Identification).
R1. List features useful for plant ID in an app (e.g., leaf shape, margin, venation, flower color,

fruit type, habitat, seasonality, toxicity). Explain why each feature helps disambiguation.
R2. Propose a knowledge graph schema: define node types (species, genus, habitat, trait,

image) and edge types (has_trait, grows_in, similar_to). Sketch a small example with
5–10 nodes.

R3. Describe a hybrid pipeline that combines image embeddings from a CNN with symbolic
constraints from your knowledge graph to improve robustness.

4.2 Reasoning

What it is. Drawing conclusions by combining rules, domain models, and facts using symbolic
and numerical inference ([22,36]). For example, from A → B, B → C and the meta-rule
(x→y ∧ y →z) ⇒ x→z we infer A → C. Another example is to exploit mathematical models in
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physics for numerical inference, such as Newton’s law of motion F⃗ = ma⃗ when reasoning about
a control strategy for robotics. Challenges include combinatorial explosion (e.g., heuristic search
[38]), uncertainty propagation, and imprecision (fuzzy logic).

Why it matters. To maximize the use of both data and expert knowledge/models.

A B C
3 4

7 (inferred)

Figure 5: Reasoning composition: chaining implications.

Figure 6: Reasoning and search: from classical planning to game-playing systems such as Deep
Blue.

Reference: [7].

Exercises (Reasoning).
G1. Construct a rule chain of at least three implications in a real-world setting (e.g., if it

rains → road is wet, if road is wet → traffic slows down, therefore if it rains → traffic
slows down). Discuss the assumptions behind your chain.

G2. Introduce uncertainty: assign probabilities or fuzzy truth values to your rules and show
how they affect the final inference.

G3. Compare symbolic inference (rules, logic) with numerical inference (statistics, probabilities)
in your example. What are the strengths and limitations of each?

4.3 Learning

What it is. Supervised learning reduces error on selected training examples via (multiobjective)
optimization; unsupervised learning explores data to reveal hidden patterns; learning requests
informative data; transfer learning reuses knowledge across tasks; imitation learning learns from
demonstrations; and reinforcement learning learns by trial-and-error with rewards.

Supervised learning. Seek a mapping x 7→ y from labeled pairs (x, y) by minimizing a
task-specific loss for classification or regression. In practice one balances fit and generalization
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Figure 7: Learning paradigms: playful (unsupervised) and supervised training. (Right image
credit: https://www.vecteezy.com/photo/68678450)

(regularization, early stopping), chooses model classes (e.g. linear models, kernels, deep nets),
and may optimize multiple objectives (accuracy, sparsity, latency) ([17,21,20,32]).

Unsupervised learning. Discover structure in unlabeled data via clustering, density esti-
mation, and dimensionality reduction. Typical objectives include compactness and separation
of clusters, likelihood maximization, and information preservation; examples include k-means,
Gaussian mixtures, PCA, autoencoders, and VAEs ([17,23,24]).

Active learning. When labels are expensive, the learner selects the most informative data
points to query (uncertainty sampling, expected model change), closing the loop between model
and annotator to reduce labeling cost while maintaining quality ([26]).

Transfer learning. Reuse knowledge from a source task/domain to accelerate or improve a
target task. Mechanisms include representation transfer (frozen backbones with small heads),
parameter transfer (fine-tuning), domain adaptation, and multi-task learning ([27,5]).

Imitation learning. Learn a policy from demonstrations: either by behavior cloning (super-
vised learning on state–action pairs) or by inferring the demonstrator’s objective and optimizing
it (inverse reinforcement learning). Imitation can seed policies that are later refined with
environment interaction ([29,30,28]).

Reinforcement learning. Learn to act by trial-and-error, optimizing expected cumulative
reward through interaction with an environment. Core ideas include value functions, policy
gradients, exploration, and credit assignment; self-play is a powerful driver for domains like
games ([19,1]).

Developmental remark. A two-year-old can already pick berries: her competence probably
emerges as a result of different learning styles—unsupervised play with small objects (sensorimotor
exploration), learning by reward (reinforcement learning), learning by imitation (parents and
older siblings as demonstrators), and occasional active queries (pointing/asking) that elicit
targeted feedback, e.g., asking if a berry is good.
References: [8], [9].

Exercises (Supervised Learning: Finnish Vocabulary). Task. Treat vocabulary acquisi-
tion as a supervised learning problem. Given inputs (English words) and gold labels (Finnish
translations), your goal is to minimize the error between your predictions and the labels.
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Figure 8: Child searching and picking blueberries.

Instructions.
1. Write your predicted Finnish translation for each English word in the middle column.
2. After checking the gold labels, compute the 0–1 loss for each item (1 if incorrect, 0 if

correct) and sum to obtain the total error.
3. Repeat after study; your aim is to reduce the total error over iterations (“epochs”).

English (input) Your prediction (Finnish) Gold label

Teacher opettaja
Example esimerkki
Supervisor ohjaaja
Learning oppiminen
Computer tietokone
Knowledge tieto
Neural Network neuroverkko
Deep Learning syväoppiminen
Artificial Intelligence tekoäly
Intelligence älykkyys

Extension. Design an active learning loop: mark which words you are least confident about and
query a native speaker or dictionary first. Track accuracy over time.

Scoring

For n = 10 items with predictions ŷi and labels yi, compute L =
∑n

i=1 1[ŷi ≠ yi]. Your objective
is to minimize L. Optionally report accuracy (1 − L/n).

Optional reflection

What features or mnemonics helped you generalize? Could transfer learning help (e.g., reusing
knowledge from other languages)?

4.4 Self-Adaptation and Meta-Learning

What it is. Handling new tasks via meta-learning and transfer; self-play and reward-driven
learning; simulated evolution via selection–mutation–crossover; and transfer learning (learning
task A helps to learn task B) ([19,33,35,34]).
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Why it matters. Flexibility for changing environments and open-ended evolution.

Figure 9: Self-play & deep reinforcement learning as drivers of emergent competence.

References: [10]; [11]; [12]; [13].

Exercises (Self-Adaptation and Open-Ended Evolution).
S1. Consider a berry-picking robot swarm capable of self-replication, with survival propor-

tional to picking efficiency. List three emergent risks (e.g., ecological damage, resource
overuse, adversarial behaviors) and why they might arise.

S2. Propose safeguards (simulation-only evolution, containment, fitness shaping, human
oversight, kill-switches) and discuss trade-offs with performance and exploration.

S3. Write a short ethical reflection: which activities should be restricted to simulation vs.
allowed in the real world, and under what regulatory framework?

4.5 Interaction (with Humans, Environment, Other Agents)

What it is. Mechanisms that connect perception, decision making, and action in the world,
and that coordinate with people who may hold different goals, preferences, and perspectives
([14,16]).

Why it matters. Interaction turns learned capability into real-world usefulness and safety:
systems must perceive in real time, act reliably, and work with stakeholders (users, operators,
bystanders), supporting oversight and value alignment ([14]).

Low-level perception and control. At the sensorimotor layer, systems perform real-time
signal processing (filtering, detection), segmentation and interpretation (e.g., object/scene
understanding), and state estimation via probabilistic inference; these feed closed-loop controllers
that map signals to actions (from reactive policies to planning-based control). Typical toolkits
include deep perception models ([25,18]), probabilistic reasoning for fusion and tracking ([22]),
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and search/planning to connect goals with feasible trajectories ([38]). Reinforcement learning
policies may replace or complement classical controllers when rich interaction data are available
([19]).

High-level human-centered interaction. Above the control loop, systems coordinate with
humans who differ in goals, preferences, and perspectives on a problem. This includes dialogue and
explanation, preference elicitation and interactive learning (human-in-the-loop/active learning),
and mechanisms for resolving trade-offs among competing objectives in context ([14,26,16]).
Good interfaces capture feedback efficiently, reveal uncertainty, and enable meaningful oversight—
linking back to the Interfaces cornerstone.

Figure 10: Interaction-centric systems: sensing, acting, and aligning with human goals. (Yeliza-
veta Thomashevska, licensed from iStock.com)

References: [14]; [15].

Exercises (Interaction and Safe Berry Picking).
I1. Design a robot to pick a berry without damaging the plant. List the interaction

hardware you would use (e.g., soft gripper or suction end-effector, tactile/force sensors,
high-resolution RGB-D camera, hyperspectral snap for ripeness, compliant actuators) and
justify each choice.

I2. Sketch a perception–action loop: perception modules, state estimation, grasp planning,
force control, safety checks, and human override.

I3. Propose evaluation metrics (bruise rate, detach force peak, success rate, cycle time,
plant damage score) and an experiment design to compare two grippers.

5 Workshop: Designing a “Berry Assistant”

Five-Minute Ideation (Flinga Whiteboard)

Imagine an AI app for berry search, identification, and picking, and collaboratively capture
ideas (e.g., via Flinga) by specifying the resources needed in terms of the four cornerstones (data,
compute, algorithms, and interfaces), by explaining how the five pillars (reasoning, learning,
representation, self-adaptation, and interaction) are embodied in the design, and by outlining
how the app will be useful, reliable, and ethical.
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Figure 11: Collaborative ideation (left: access QR/link); concept mockup (right). Short link:
https://tinyurl.com/2tu2x7kx.

Data Compute Algorithms Interfaces

A
B

C

Figure 12: Suggestion for a cornerstone profiles for different Berry Assistant configurations (A)
Finding on Map, (B) Identifying, and Picking Robot (C).

Cornerstones for the Berry Assistant

6 Conclusion
We presented a compact tutorial unifying practical enablers (cornerstones) with methodological
pillars. The Berry Assistant ideation exercise illustrates translating the framework into a real
application. For coursework or self-study, repeat the exercise for an AI application of your choice
and prepare a short presentation.
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